/******************************************************************************* * Copyright (c) 2000, 2007 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.aspectj.org.eclipse.jdt.internal.compiler.lookup; import org.aspectj.org.eclipse.jdt.internal.compiler.ast.TypeParameter; import org.aspectj.org.eclipse.jdt.internal.compiler.util.HashtableOfObject; import org.aspectj.org.eclipse.jdt.internal.compiler.util.SimpleSet; class MethodVerifier15 extends MethodVerifier { MethodVerifier15(LookupEnvironment environment) { super(environment); } boolean areMethodsCompatible(MethodBinding one, MethodBinding two) { MethodBinding sub = computeSubstituteMethod(two, one); return sub != null && doesSubstituteMethodOverride(one, sub) && areReturnTypesCompatible(one, sub); } boolean areParametersEqual(MethodBinding one, MethodBinding two) { TypeBinding[] oneArgs = one.parameters; TypeBinding[] twoArgs = two.parameters; if (oneArgs == twoArgs) return true; int length = oneArgs.length; if (length != twoArgs.length) return false; if (one.declaringClass.isInterface()) { for (int i = 0; i < length; i++) if (!areTypesEqual(oneArgs[i], twoArgs[i])) return false; } else { // methods with raw parameters are considered equal to inherited methods // with parameterized parameters for backwards compatibility, need a more complex check int i; foundRAW: for (i = 0; i < length; i++) { if (!areTypesEqual(oneArgs[i], twoArgs[i])) { if (oneArgs[i].leafComponentType().isRawType()) { if (oneArgs[i].dimensions() == twoArgs[i].dimensions() && oneArgs[i].leafComponentType().isEquivalentTo(twoArgs[i].leafComponentType())) { // raw mode does not apply if the method defines its own type variables if (one.typeVariables != Binding.NO_TYPE_VARIABLES) return false; // one parameter type is raw, hence all parameters types must be raw or non generic // otherwise we have a mismatch check backwards for (int j = 0; j < i; j++) if (oneArgs[j].leafComponentType().isParameterizedType()) return false; // switch to all raw mode break foundRAW; } } return false; } } // all raw mode for remaining parameters (if any) for (i++; i < length; i++) { if (!areTypesEqual(oneArgs[i], twoArgs[i])) { if (oneArgs[i].leafComponentType().isRawType()) if (oneArgs[i].dimensions() == twoArgs[i].dimensions() && oneArgs[i].leafComponentType().isEquivalentTo(twoArgs[i].leafComponentType())) continue; return false; } else if (oneArgs[i].leafComponentType().isParameterizedType()) { return false; // no remaining parameter can be a Parameterized type (if one has been converted then all RAW types must be converted) } } } return true; } boolean areReturnTypesCompatible(MethodBinding one, MethodBinding two) { if (one.returnType == two.returnType) return true; return areReturnTypesCompatible0(one, two); } boolean areTypesEqual(TypeBinding one, TypeBinding two) { if (one == two) return true; // need to consider X and X as the same 'type' if (one.isParameterizedType() && two.isParameterizedType()) return one.isEquivalentTo(two) && two.isEquivalentTo(one); // Can skip this since we resolved each method before comparing it, see computeSubstituteMethod() // if (one instanceof UnresolvedReferenceBinding) // return ((UnresolvedReferenceBinding) one).resolvedType == two; // if (two instanceof UnresolvedReferenceBinding) // return ((UnresolvedReferenceBinding) two).resolvedType == one; return false; // all other type bindings are identical } boolean canSkipInheritedMethods() { if (this.type.superclass() != null) if (this.type.superclass().isAbstract() || this.type.superclass().isParameterizedType()) return false; return this.type.superInterfaces() == Binding.NO_SUPERINTERFACES; } boolean canSkipInheritedMethods(MethodBinding one, MethodBinding two) { return two == null // already know one is not null || (one.declaringClass == two.declaringClass && !one.declaringClass.isParameterizedType()); } void checkConcreteInheritedMethod(MethodBinding concreteMethod, MethodBinding[] abstractMethods) { super.checkConcreteInheritedMethod(concreteMethod, abstractMethods); for (int i = 0, l = abstractMethods.length; i < l; i++) { MethodBinding abstractMethod = abstractMethods[i]; if (concreteMethod.isVarargs() != abstractMethod.isVarargs()) problemReporter().varargsConflict(concreteMethod, abstractMethod, this.type); // so the parameters are equal and the return type is compatible b/w the currentMethod & the substituted inheritedMethod MethodBinding originalInherited = abstractMethod.original(); if (originalInherited.returnType != concreteMethod.returnType) { if (abstractMethod.returnType.leafComponentType().isParameterizedType()) { if (concreteMethod.returnType.leafComponentType().isRawType()) problemReporter().unsafeReturnTypeOverride(concreteMethod, originalInherited, this.type); } else if (abstractMethod.hasSubstitutedReturnType() && originalInherited.returnType.leafComponentType().isTypeVariable()) { if (((TypeVariableBinding) originalInherited.returnType.leafComponentType()).declaringElement == originalInherited) { // see 81618 - type variable from inherited method TypeBinding currentReturnType = concreteMethod.returnType.leafComponentType(); if (!currentReturnType.isTypeVariable() || ((TypeVariableBinding) currentReturnType).declaringElement != concreteMethod) problemReporter().unsafeReturnTypeOverride(concreteMethod, originalInherited, this.type); } } } // check whether bridge method is already defined above for interface methods if (originalInherited.declaringClass.isInterface() && this.type.superclass.erasure().findSuperTypeWithSameErasure(originalInherited.declaringClass) == null) { this.type.addSyntheticBridgeMethod(originalInherited, concreteMethod.original()); } } } void checkForBridgeMethod(MethodBinding currentMethod, MethodBinding inheritedMethod, MethodBinding[] allInheritedMethods) { if (currentMethod.isVarargs() != inheritedMethod.isVarargs()) problemReporter(currentMethod).varargsConflict(currentMethod, inheritedMethod, this.type); // so the parameters are equal and the return type is compatible b/w the currentMethod & the substituted inheritedMethod MethodBinding originalInherited = inheritedMethod.original(); if (originalInherited.returnType != currentMethod.returnType) { // if (currentMethod.returnType.needsUncheckedConversion(inheritedMethod.returnType)) { // problemReporter(currentMethod).unsafeReturnTypeOverride(currentMethod, originalInherited, this.type); if (inheritedMethod.returnType.leafComponentType().isParameterizedType() && currentMethod.returnType.leafComponentType().isRawType()) { problemReporter(currentMethod).unsafeReturnTypeOverride(currentMethod, originalInherited, this.type); } else if (inheritedMethod.hasSubstitutedReturnType() && originalInherited.returnType.leafComponentType().isTypeVariable()) { if (((TypeVariableBinding) originalInherited.returnType.leafComponentType()).declaringElement == originalInherited) { // see 81618 - type variable from inherited method TypeBinding currentReturnType = currentMethod.returnType.leafComponentType(); if (!currentReturnType.isTypeVariable() || ((TypeVariableBinding) currentReturnType).declaringElement != currentMethod) problemReporter(currentMethod).unsafeReturnTypeOverride(currentMethod, originalInherited, this.type); } } } if (this.type.addSyntheticBridgeMethod(originalInherited, currentMethod.original()) != null) { for (int i = 0, l = allInheritedMethods.length; i < l; i++) { MethodBinding otherInheritedMethod = allInheritedMethods[i]; MethodBinding otherOriginal = otherInheritedMethod.original(); // only check inherited methods that are different & come from separate inheritance paths if (otherOriginal == originalInherited || otherOriginal == otherInheritedMethod) continue; if (inheritedMethod.areParametersEqual(otherInheritedMethod)) continue; // skip it if otherInheritedMethod is defined by a subtype of inheritedMethod's declaringClass if (otherInheritedMethod.declaringClass.erasure() != inheritedMethod.declaringClass.erasure()) if (otherInheritedMethod.declaringClass.findSuperTypeWithSameErasure(inheritedMethod.declaringClass) != null) continue; if (detectInheritedNameClash(originalInherited, otherOriginal)) return; } } } void checkForNameClash(MethodBinding currentMethod, MethodBinding inheritedMethod) { // sent from checkMethods() to compare a current method and an inherited method that are not 'equal' // error cases: // abstract class AA { abstract void test(E element); } // class A extends AA { public void test(Integer i) {} } // public class B extends A { public void test(Comparable i) {} } // interface I { void test(E element); } // class A implements I { public void test(Integer i) {} } // public class B extends A { public void test(Comparable i) {} } // abstract class Y implements EqualityComparable, Equivalent { // public boolean equalTo(Integer other) { return true; } // } // interface Equivalent { boolean equalTo(T other); } // interface EqualityComparable { boolean equalTo(T other); } // class Y implements EqualityComparable, Equivalent{ // public boolean equalTo(String other) { return true; } // public boolean equalTo(Object other) { return true; } // } // interface Equivalent { boolean equalTo(T other); } // interface EqualityComparable { boolean equalTo(Object other); } // class A { void m(T t) {} } // class B extends A { void m(S t) {}} // class D extends B { void m(Number t) {} void m(Integer t) {} } // inheritedMethods does not include I.test since A has a valid implementation // interface I> { void test(E element); } // class A implements I { public void test(Integer i) {} } // class B extends A { public void test(Comparable i) {} } if (currentMethod.declaringClass.isInterface() || currentMethod.isStatic()) return; if (!detectNameClash(currentMethod, inheritedMethod)) { // check up the hierarchy for skipped inherited methods TypeBinding[] currentParams = currentMethod.parameters; TypeBinding[] inheritedParams = inheritedMethod.parameters; int length = currentParams.length; if (length != inheritedParams.length) return; // no match for (int i = 0; i < length; i++) if (currentParams[i] != inheritedParams[i]) if (currentParams[i].isBaseType() != inheritedParams[i].isBaseType() || !inheritedParams[i].isCompatibleWith(currentParams[i])) return; // no chance that another inherited method's bridge method can collide ReferenceBinding[] interfacesToVisit = null; int nextPosition = 0; ReferenceBinding superType = inheritedMethod.declaringClass; ReferenceBinding[] itsInterfaces = superType.superInterfaces(); if (itsInterfaces != Binding.NO_SUPERINTERFACES) { nextPosition = itsInterfaces.length; interfacesToVisit = itsInterfaces; } superType = superType.superclass(); // now start with its superclass while (superType != null && superType.isValidBinding()) { MethodBinding[] methods = superType.getMethods(currentMethod.selector); for (int m = 0, n = methods.length; m < n; m++) { MethodBinding substitute = computeSubstituteMethod(methods[m], currentMethod); if (substitute != null && !doesSubstituteMethodOverride(currentMethod, substitute) && detectNameClash(currentMethod, substitute)) return; } if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) { if (interfacesToVisit == null) { interfacesToVisit = itsInterfaces; nextPosition = interfacesToVisit.length; } else { int itsLength = itsInterfaces.length; if (nextPosition + itsLength >= interfacesToVisit.length) System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[nextPosition + itsLength + 5], 0, nextPosition); nextInterface : for (int a = 0; a < itsLength; a++) { ReferenceBinding next = itsInterfaces[a]; for (int b = 0; b < nextPosition; b++) if (next == interfacesToVisit[b]) continue nextInterface; interfacesToVisit[nextPosition++] = next; } } } superType = superType.superclass(); } for (int i = 0; i < nextPosition; i++) { superType = interfacesToVisit[i]; if (superType.isValidBinding()) { MethodBinding[] methods = superType.getMethods(currentMethod.selector); for (int m = 0, n = methods.length; m < n; m++){ MethodBinding substitute = computeSubstituteMethod(methods[m], currentMethod); if (substitute != null && !doesSubstituteMethodOverride(currentMethod, substitute) && detectNameClash(currentMethod, substitute)) return; } if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) { int itsLength = itsInterfaces.length; if (nextPosition + itsLength >= interfacesToVisit.length) System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[nextPosition + itsLength + 5], 0, nextPosition); nextInterface : for (int a = 0; a < itsLength; a++) { ReferenceBinding next = itsInterfaces[a]; for (int b = 0; b < nextPosition; b++) if (next == interfacesToVisit[b]) continue nextInterface; interfacesToVisit[nextPosition++] = next; } } } } } } void checkInheritedMethods(MethodBinding inheritedMethod, MethodBinding otherInheritedMethod) { // sent from checkMethods() to compare 2 inherited methods that are not 'equal' if (inheritedMethod.declaringClass.erasure() == otherInheritedMethod.declaringClass.erasure()) { if (inheritedMethod.areParameterErasuresEqual(otherInheritedMethod)) { problemReporter().duplicateInheritedMethods(this.type, inheritedMethod, otherInheritedMethod); return; } } else if (inheritedMethod.declaringClass.findSuperTypeWithSameErasure(otherInheritedMethod.declaringClass) != null) { // skip it if inheritedMethod is defined by a subtype of otherInheritedMethod declaringClass return; } // the 2 inherited methods clash because of a parameterized type overrides a raw type // interface I { void foo(A a); } // class Y { void foo(A a) {} } // abstract class X extends Y implements I { } // class A {} // in this case the 2 inherited methods clash because of type variables // interface I { void foo(T t); } // class Y { void foo(T t) {} } // abstract class X extends Y implements I {} if (inheritedMethod.declaringClass.isInterface() || inheritedMethod.isStatic()) return; detectInheritedNameClash(inheritedMethod.original(), otherInheritedMethod.original()); } void checkInheritedMethods(MethodBinding[] methods, int length) { int count = length; int[] skip = new int[count]; nextMethod : for (int i = 0, l = length - 1; i < l; i++) { if (skip[i] == -1) continue nextMethod; MethodBinding method = methods[i]; MethodBinding[] duplicates = null; for (int j = i + 1; j <= l; j++) { MethodBinding method2 = methods[j]; if (method.declaringClass == method2.declaringClass && areMethodsCompatible(method, method2)) { skip[j] = -1; if (duplicates == null) duplicates = new MethodBinding[length]; duplicates[j] = method2; } } if (duplicates != null) { // found an inherited ParameterizedType that defines duplicate methods // if all methods are abstract or more than 1 concrete method exists, then consider them to be duplicates // if a single concrete method 'implements' the abstract methods, then do not report a duplicate error int concreteCount = method.isAbstract() ? 0 : 1; MethodBinding methodToKeep = method; // if a concrete method exists, keep it, otherwise keep the first method for (int m = 0, s = duplicates.length; m < s; m++) { if (duplicates[m] != null) { if (!duplicates[m].isAbstract()) { methodToKeep = duplicates[m]; concreteCount++; } } } if (concreteCount != 1) { for (int m = 0, s = duplicates.length; m < s; m++) { if (duplicates[m] != null) { // AspectJ - dont reduce count if no error reported if (problemReporter().duplicateInheritedMethods(this.type, method, duplicates[m])) { count--; if (methodToKeep == duplicates[m]) methods[i] = null; else methods[m] = null; } } } } } } if (count < length) { boolean replace = true; if (count == 1) return; // no need to continue since only 1 inherited method is left int a = count; int b = length; MethodBinding[] newMethods = new MethodBinding[count]; for (int i = length; --i >= 0 && replace;) if (methods[i] != null) { count = count - 1; if (count<0) { System.err.println("DEBUG: In pr239120 situation..."); System.err.println("DEBUG: Count was "+a+" Length was "+b); System.err.println("Methods being checked for this type "+this.type.debugName()); System.err.println("Number of methods "+methods.length); for (int j=0; j 1 // its possible in 1.5 that A is compatible with B & C, but B is not compatible with C int[] areIncompatible = null; // abstract classes must check every method against each other for (int i = 0, l = this.type.isAbstract() ? length - 2 : 0; i <= l;) { MethodBinding method = methods[i++]; nextMethod : for (int j = i; j < length; j++) { if (!areReturnTypesCompatible(method, methods[j])) { if (this.type.isInterface()) for (int m = length; --m >= 0;) if (methods[m].declaringClass.id == TypeIds.T_JavaLangObject) continue nextMethod; // do not complain since the super interface already got blamed // check to see if this is just a warning, if so report it & skip to next method if (isUnsafeReturnTypeOverride(method, methods[j])) { problemReporter(method).unsafeReturnTypeOverride(method, methods[j], this.type); continue nextMethod; } if (areIncompatible == null) areIncompatible = new int[length]; areIncompatible[i - 1] = -1; areIncompatible[j] = -1; } } } if (areIncompatible == null) return true; int count = 0; for (int i = 0; i < length; i++) if (areIncompatible[i] == -1) count++; if (count == length) { problemReporter().inheritedMethodsHaveIncompatibleReturnTypes(this.type, methods, length); return false; } MethodBinding[] methodsToReport = new MethodBinding[count]; for (int i = 0, index = 0; i < length; i++) if (areIncompatible[i] == -1) methodsToReport[index++] = methods[i]; problemReporter().inheritedMethodsHaveIncompatibleReturnTypes(this.type, methodsToReport, count); return false; } void checkMethods() { boolean mustImplementAbstractMethods = mustImplementAbstractMethods(); boolean skipInheritedMethods = mustImplementAbstractMethods && canSkipInheritedMethods(); // have a single concrete superclass so only check overridden methods char[][] methodSelectors = this.inheritedMethods.keyTable; nextSelector : for (int s = methodSelectors.length; --s >= 0;) { if (methodSelectors[s] == null) continue nextSelector; MethodBinding[] current = (MethodBinding[]) this.currentMethods.get(methodSelectors[s]); if (current == null && skipInheritedMethods) continue nextSelector; MethodBinding[] inherited = (MethodBinding[]) this.inheritedMethods.valueTable[s]; if (inherited.length == 1 && current == null) { // handle the common case if (mustImplementAbstractMethods && inherited[0].isAbstract()) checkAbstractMethod(inherited[0]); continue nextSelector; } int index = -1; MethodBinding[] matchingInherited = new MethodBinding[inherited.length]; byte[] foundMatch = new byte[inherited.length]; if (current != null) { for (int i = 0, length1 = current.length; i < length1; i++) { MethodBinding currentMethod = current[i]; for (int j = 0, length2 = inherited.length; j < length2; j++) { MethodBinding inheritedMethod = computeSubstituteMethod(inherited[j], currentMethod); if (inheritedMethod != null) { // New AspectJ Hack - cant be permanent, but need to think over right solution if (//foundMatch[j] == 0 || //&& doesSubstituteMethodOverride(currentMethod, inheritedMethod)) { matchingInherited[++index] = inheritedMethod; foundMatch[j] = 1; // cannot null out inherited methods } else { checkForNameClash(currentMethod, inheritedMethod); } } } if (index >= 0) { // see addtional comments in https://bugs.eclipse.org/bugs/show_bug.cgi?id=122881 // if (index > 0 && currentMethod.declaringClass.isInterface()) // only check when inherited methods are from interfaces // checkInheritedReturnTypes(matchingInherited, index + 1); checkAgainstInheritedMethods(currentMethod, matchingInherited, index + 1, inherited); // pass in the length of matching while (index >= 0) matchingInherited[index--] = null; // clear the contents of the matching methods } } } for (int i = 0, length = inherited.length; i < length; i++) { if (foundMatch[i] == 1) continue; MethodBinding inheritedMethod = inherited[i]; matchingInherited[++index] = inheritedMethod; for (int j = i + 1; j < length; j++) { MethodBinding otherInheritedMethod = inherited[j]; if (foundMatch[j] == 1 || canSkipInheritedMethods(inheritedMethod, otherInheritedMethod)) continue; otherInheritedMethod = computeSubstituteMethod(otherInheritedMethod, inheritedMethod); if (otherInheritedMethod != null) { if (inheritedMethod.declaringClass != otherInheritedMethod.declaringClass && doesSubstituteMethodOverride(inheritedMethod, otherInheritedMethod)) { matchingInherited[++index] = otherInheritedMethod; foundMatch[j] = 1; // cannot null out inherited methods } else { checkInheritedMethods(inheritedMethod, otherInheritedMethod); } } } if (index == -1) continue; if (index > 0) checkInheritedMethods(matchingInherited, index + 1); // pass in the length of matching else if (mustImplementAbstractMethods && index == 0 && matchingInherited[0].isAbstract()) checkAbstractMethod(matchingInherited[0]); while (index >= 0) matchingInherited[index--] = null; // clear the previous contents of the matching methods } } } void checkTypeVariableMethods(TypeParameter typeParameter) { char[][] methodSelectors = this.inheritedMethods.keyTable; nextSelector : for (int s = methodSelectors.length; --s >= 0;) { if (methodSelectors[s] == null) continue nextSelector; MethodBinding[] inherited = (MethodBinding[]) this.inheritedMethods.valueTable[s]; if (inherited.length == 1) continue nextSelector; int index = -1; MethodBinding[] matchingInherited = new MethodBinding[inherited.length]; for (int i = 0, length = inherited.length; i < length; i++) { while (index >= 0) matchingInherited[index--] = null; // clear the previous contents of the matching methods MethodBinding inheritedMethod = inherited[i]; if (inheritedMethod != null) { matchingInherited[++index] = inheritedMethod; for (int j = i + 1; j < length; j++) { MethodBinding otherInheritedMethod = inherited[j]; if (canSkipInheritedMethods(inheritedMethod, otherInheritedMethod)) continue; otherInheritedMethod = computeSubstituteMethod(otherInheritedMethod, inheritedMethod); if (otherInheritedMethod != null && doesSubstituteMethodOverride(inheritedMethod, otherInheritedMethod)) { matchingInherited[++index] = otherInheritedMethod; inherited[j] = null; // do not want to find it again } } } if (index > 0) { MethodBinding first = matchingInherited[0]; int count = index + 1; while (--count > 0 && areReturnTypesCompatible(first, matchingInherited[count])){/*empty*/} if (count > 0) { // All inherited methods do NOT have the same vmSignature problemReporter().inheritedMethodsHaveIncompatibleReturnTypes(typeParameter, matchingInherited, index + 1); continue nextSelector; } } } } } MethodBinding computeSubstituteMethod(MethodBinding inheritedMethod, MethodBinding currentMethod) { if (inheritedMethod == null) return null; if (currentMethod.parameters.length != inheritedMethod.parameters.length) return null; // no match // due to hierarchy & compatibility checks, we need to ensure these 2 methods are resolved if (currentMethod.declaringClass instanceof BinaryTypeBinding) ((BinaryTypeBinding) currentMethod.declaringClass).resolveTypesFor(currentMethod); if (inheritedMethod.declaringClass instanceof BinaryTypeBinding) ((BinaryTypeBinding) inheritedMethod.declaringClass).resolveTypesFor(inheritedMethod); TypeVariableBinding[] inheritedTypeVariables = inheritedMethod.typeVariables; if (inheritedTypeVariables == Binding.NO_TYPE_VARIABLES) return inheritedMethod; int inheritedLength = inheritedTypeVariables.length; TypeVariableBinding[] typeVariables = currentMethod.typeVariables; int length = typeVariables.length; if (length > 0 && inheritedLength != length) return inheritedMethod; // no match JLS 8.4.2 TypeBinding[] arguments = new TypeBinding[inheritedLength]; if (inheritedLength <= length) { System.arraycopy(typeVariables, 0, arguments, 0, inheritedLength); } else { System.arraycopy(typeVariables, 0, arguments, 0, length); for (int i = length; i < inheritedLength; i++) arguments[i] = inheritedTypeVariables[i].upperBound(); } ParameterizedGenericMethodBinding substitute = this.environment.createParameterizedGenericMethod(inheritedMethod, arguments); // interface I { void foo(T t); } // class X implements I { public void foo(T t) {} } // for the above case, we do not want to answer the substitute method since its not a match for (int i = 0; i < inheritedLength; i++) { TypeVariableBinding inheritedTypeVariable = inheritedTypeVariables[i]; TypeBinding argument = arguments[i]; if (argument instanceof TypeVariableBinding) { TypeVariableBinding typeVariable = (TypeVariableBinding) argument; if (typeVariable.firstBound == inheritedTypeVariable.firstBound) { if (typeVariable.firstBound == null) continue; // both are null } else if (typeVariable.firstBound != null && inheritedTypeVariable.firstBound != null) { if (typeVariable.firstBound.isClass() != inheritedTypeVariable.firstBound.isClass()) return inheritedMethod; // not a match } if (Scope.substitute(substitute, inheritedTypeVariable.superclass) != typeVariable.superclass) return inheritedMethod; // not a match int interfaceLength = inheritedTypeVariable.superInterfaces.length; ReferenceBinding[] interfaces = typeVariable.superInterfaces; if (interfaceLength != interfaces.length) return inheritedMethod; // not a match // TODO (kent) another place where we expect the superinterfaces to be in the exact same order next : for (int j = 0; j < interfaceLength; j++) { TypeBinding superType = Scope.substitute(substitute, inheritedTypeVariable.superInterfaces[j]); for (int k = 0; k < interfaceLength; k++) if (superType == interfaces[k]) continue next; return inheritedMethod; // not a match } } else if (inheritedTypeVariable.boundCheck(substitute, argument) != TypeConstants.OK) { return inheritedMethod; } } return substitute; } boolean detectInheritedNameClash(MethodBinding inherited, MethodBinding otherInherited) { if (!inherited.areParameterErasuresEqual(otherInherited) || inherited.returnType.erasure() != otherInherited.returnType.erasure()) return false; problemReporter().inheritedMethodsHaveNameClash(this.type, inherited, otherInherited); return true; } boolean detectNameClash(MethodBinding current, MethodBinding inherited) { MethodBinding original = inherited.original(); // can be the same as inherited if (!current.areParameterErasuresEqual(original) || current.returnType.erasure() != original.returnType.erasure()) return false; problemReporter(current).methodNameClash(current, inherited.declaringClass.isRawType() ? inherited : original); return true; } public boolean doesMethodOverride(MethodBinding method, MethodBinding inheritedMethod) { MethodBinding substitute = computeSubstituteMethod(inheritedMethod, method); return substitute != null && doesSubstituteMethodOverride(method, substitute); } // if method "overrides" substituteMethod then we can skip over substituteMethod while resolving a message send // if it does not then a name clash error is likely boolean doesSubstituteMethodOverride(MethodBinding method, MethodBinding substituteMethod) { if (!areParametersEqual(method, substituteMethod)) { // method can still override substituteMethod in cases like : // void c(U u) {} // @Override void c(Number n) {} // but method cannot have a "generic-enabled" parameter type if (substituteMethod.hasSubstitutedParameters() && method.areParameterErasuresEqual(substituteMethod)) return method.typeVariables == Binding.NO_TYPE_VARIABLES && !hasGenericParameter(method); return false; } if (substituteMethod instanceof ParameterizedGenericMethodBinding) { // since substituteMethod has substituted type variables, method cannot have a generic signature AND no variables -> its a name clash if it does return ! (hasGenericParameter(method) && method.typeVariables == Binding.NO_TYPE_VARIABLES); } // if method has its own variables, then substituteMethod failed bounds check in computeSubstituteMethod() return method.typeVariables == Binding.NO_TYPE_VARIABLES; } boolean hasGenericParameter(MethodBinding method) { if (method.genericSignature() == null) return false; // may be only the return type that is generic, need to check parameters TypeBinding[] params = method.parameters; for (int i = 0, l = params.length; i < l; i++) { TypeBinding param = params[i].leafComponentType(); if (param instanceof ReferenceBinding) { int modifiers = ((ReferenceBinding) param).modifiers; if ((modifiers & ExtraCompilerModifiers.AccGenericSignature) != 0) return true; } } return false; } boolean doTypeVariablesClash(MethodBinding one, MethodBinding substituteTwo) { // one has type variables and substituteTwo did not pass bounds check in computeSubstituteMethod() return one.typeVariables != Binding.NO_TYPE_VARIABLES && !(substituteTwo instanceof ParameterizedGenericMethodBinding); } SimpleSet findSuperinterfaceCollisions(ReferenceBinding superclass, ReferenceBinding[] superInterfaces) { ReferenceBinding[] interfacesToVisit = null; int nextPosition = 0; ReferenceBinding[] itsInterfaces = superInterfaces; if (itsInterfaces != Binding.NO_SUPERINTERFACES) { nextPosition = itsInterfaces.length; interfacesToVisit = itsInterfaces; } boolean isInconsistent = this.type.isHierarchyInconsistent(); ReferenceBinding superType = superclass; while (superType != null && superType.isValidBinding()) { isInconsistent |= superType.isHierarchyInconsistent(); if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) { if (interfacesToVisit == null) { interfacesToVisit = itsInterfaces; nextPosition = interfacesToVisit.length; } else { int itsLength = itsInterfaces.length; if (nextPosition + itsLength >= interfacesToVisit.length) System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[nextPosition + itsLength + 5], 0, nextPosition); nextInterface : for (int a = 0; a < itsLength; a++) { ReferenceBinding next = itsInterfaces[a]; for (int b = 0; b < nextPosition; b++) if (next == interfacesToVisit[b]) continue nextInterface; interfacesToVisit[nextPosition++] = next; } } } superType = superType.superclass(); } for (int i = 0; i < nextPosition; i++) { superType = interfacesToVisit[i]; if (superType.isValidBinding()) { isInconsistent |= superType.isHierarchyInconsistent(); if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) { int itsLength = itsInterfaces.length; if (nextPosition + itsLength >= interfacesToVisit.length) System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[nextPosition + itsLength + 5], 0, nextPosition); nextInterface : for (int a = 0; a < itsLength; a++) { ReferenceBinding next = itsInterfaces[a]; for (int b = 0; b < nextPosition; b++) if (next == interfacesToVisit[b]) continue nextInterface; interfacesToVisit[nextPosition++] = next; } } } } if (!isInconsistent) return null; // hierarchy is consistent so no collisions are possible SimpleSet copy = null; for (int i = 0; i < nextPosition; i++) { ReferenceBinding current = interfacesToVisit[i]; if (current.isValidBinding()) { TypeBinding erasure = current.erasure(); for (int j = i + 1; j < nextPosition; j++) { ReferenceBinding next = interfacesToVisit[j]; if (next.isValidBinding() && next.erasure() == erasure) { if (copy == null) copy = new SimpleSet(nextPosition); copy.add(interfacesToVisit[i]); copy.add(interfacesToVisit[j]); } } } } return copy; } // caveat: returns false if a method is implemented that needs a bridge method boolean isInterfaceMethodImplemented(MethodBinding inheritedMethod, MethodBinding existingMethod, ReferenceBinding superType) { if (inheritedMethod.original() != inheritedMethod && existingMethod.declaringClass.isInterface()) return false; // must hold onto ParameterizedMethod to see if a bridge method is necessary inheritedMethod = computeSubstituteMethod(inheritedMethod, existingMethod); return inheritedMethod != null && inheritedMethod.returnType == existingMethod.returnType // keep around to produce bridge methods && super.isInterfaceMethodImplemented(inheritedMethod, existingMethod, superType); } boolean isUnsafeReturnTypeOverride(MethodBinding currentMethod, MethodBinding inheritedMethod) { // JLS 3 §8.4.5: more are accepted, with an unchecked conversion if (currentMethod.returnType == inheritedMethod.returnType.erasure()) { TypeBinding[] currentParams = currentMethod.parameters; TypeBinding[] inheritedParams = inheritedMethod.parameters; for (int i = 0, l = currentParams.length; i < l; i++) if (!areTypesEqual(currentParams[i], inheritedParams[i])) return true; } if (currentMethod.typeVariables == Binding.NO_TYPE_VARIABLES && inheritedMethod.original().typeVariables != Binding.NO_TYPE_VARIABLES && currentMethod.returnType.erasure().findSuperTypeWithSameErasure(inheritedMethod.returnType.erasure()) != null) { return true; } return false; } boolean reportIncompatibleReturnTypeError(MethodBinding currentMethod, MethodBinding inheritedMethod) { if (isUnsafeReturnTypeOverride(currentMethod, inheritedMethod)) { problemReporter(currentMethod).unsafeReturnTypeOverride(currentMethod, inheritedMethod, this.type); return false; } return super.reportIncompatibleReturnTypeError(currentMethod, inheritedMethod); } void verify(SourceTypeBinding someType) { if (someType.isAnnotationType()) someType.detectAnnotationCycle(); super.verify(someType); for (int i = someType.typeVariables.length; --i >= 0;) { TypeVariableBinding var = someType.typeVariables[i]; // must verify bounds if the variable has more than 1 if (var.superInterfaces == Binding.NO_SUPERINTERFACES) continue; if (var.superInterfaces.length == 1 && var.superclass.id == TypeIds.T_JavaLangObject) continue; this.currentMethods = new HashtableOfObject(0); ReferenceBinding superclass = var.superclass(); if (superclass.kind() == Binding.TYPE_PARAMETER) superclass = (ReferenceBinding) superclass.erasure(); ReferenceBinding[] itsInterfaces = var.superInterfaces(); ReferenceBinding[] superInterfaces = new ReferenceBinding[itsInterfaces.length]; for (int j = itsInterfaces.length; --j >= 0;) { superInterfaces[j] = itsInterfaces[j].kind() == Binding.TYPE_PARAMETER ? (ReferenceBinding) itsInterfaces[j].erasure() : itsInterfaces[j]; } computeInheritedMethods(superclass, superInterfaces); checkTypeVariableMethods(someType.scope.referenceContext.typeParameters[i]); } } }